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Abstract

We solve two hydrodynamical problems. The first involves a shock
wave, & contact discontinuity, and a rarefaction wave using an uncondi-
tionally stable finite difference scheme. The Courent condition is sat=
isfied everywhere except in one zone behind the shock, where it is vio=-
lated by factors of 10 and 100. The nonlinear difference equations are
solved by Newton's method. The total number of Newton iterations to get
to a certain time is apparently independent of the degree to which the
normel stability condition is violated in the one zone.

The second problem involves two rarefaction waves moving in oppo-
site directions. One wave moves in a region where the Courant condition
is violated by a factor of spproximately two. The other wave moves in
a region where the Courant condition is satisfied. Numerical results
are compared with the analytical solution.

An examination of several runs indicates one explicit time step is
about five times as fast as one implicit time step. Therefore, use of
the implicit method is indicated when the Courant condition is violated

by a factor of 5 or more.
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Chapter I

Introduction

Consider a hydrodynamical problem in which a shock wave or dis-
turbance of some kind is advancing into a material. Suppose that in
the neighborhood of the disturbance the sound speed is C0 and suppose
also that there is a relatively quiescent region behind the disturbance
in which the sound speed is Cl. Any explicit finite difference method

will require

At
maxc-&<l

s0 that if Cl >> Co one will be forced to follow the uninteresting de=-
tails of the motion in the quiescent region. An unconditionally stable
finite difference method would be useful in such a problem. We present
such a method for the equations of nonviscous compressible flow in one~

dimensional Lagrangian coordinates.

The Differential Equations

The Lagrangian hydrodynamic equations with time t and mass m as

independent veariebles are:




-5 =0 (mass equation)

gltl + am =0 (momentum equation)
g% +p g% = 0 (energy equation)

The dependent variables are:

p = density
u = velocity
pv= pressure
I = internal energy

The velocity is defined by

u=&

vhere x is the coordinate of an element of fluid in the laboratory
frame. Differentiating this velocity equation with respect to mass

we see from the mass equation that

Q

O
I
BiX

The Difference Equations

To form difference equations from the differential equations we

imegine the fluid partitioned into cells of mass mJ vhere j = L,2,¢00,J,

J being the total number of cells. Subscripts on field varisbles denote




the value of that particular varieble at that space point. For example,
u 341 /2 denotes the right-hand cell boundary velocity of the ,jth cell.

Superscripts denote time steps. For example, Ig"'l denotes the in-
ternal energy of the jth cell at time t = (n+l)At.

We make the following difference approximations:

du d
- %
(1) un+l - 29( n+l _ n+l 2(1_9)( n _ I)n )
gr/e T Yynfe APy Pii1 . Py = Ps1
Ot m'j + m 341 m(j + mj+l
ox _ u
3% -
(2) xn+]];/ - B /
J+l/2 J+l/2 _ 5 n+l n
I3 = Ougayp + (1=00uy, /0
1 _ox
p Om
(3)
n+l m,j
g on+l _ on+l
X341/2 T *3-1/2
oL _ _
3" P
(1)
I;H.l - ];nl Gp?l n+l n+l (1-6)p
At - m, (uj-l/e - u3+1/2) R (“3-1/2 B u,j+l/2)

-J-J-




This form of the difference equations was chosen because it gives
a fairly simple form to the Jacobian matrix. We expect that the Newton
iterative method would work just as well for other forms of the equa-
tions.

The polytropic gas equation of state is used., Also a pseudo=-
viscosity term is added to the pressure to spread the shock front. The

pressure term then takes the form [1]:

( 5) pfjﬂ.l = ( 7-l)p?+lI?+l +) /mnpn+l <un+l n+l 2)

WPy \a-1/2 T a1/
if
n+l n+l
(w3%7e - ¥i1/2) > ©
n+l . oy 0+l ontl
if
n+l n+l
(452272 = w3iae) < 0

Here 7 is a constant characteristic of the gas and A is a constant

whose choice will be discussed later.

Rewriting Equations (1) and (4) we have:

n+l n+l n a
(6) un+l - un - 29(Pj - P,j+l)At ) 2(1-9)(PJ - PJ+1)At .
J+1/2 T Yje1/2 m ¥ o




n+l/ n+l n+l nfn n
(1) = .. %, (ué-l/2 - U1/p)it  (1-0)py (s - wirn/e)tt -0
J J m n,
J J

for j = 1,2,e00yJe

Assuming that we know the values of the dependent variables at time
n, this gives us a system of 2J similtaneous nonlinear equations in 2J
unknowns for the values at time n+l,

Newton's method can be used to solve this system of equations. For

a general system of the form

f(y) = 0

where f and y are vectors Newton's method is an iterative procedure in

which the p+l=st iterative y(p"l) is defined by

Jor) _ (@),

where Ay is the solution of the linear system

(8) aay = -z[y(P)]

where

evaluated at y(p) o
Taking (5) into account we see that (6) and (7) may be written in

the form

~13=-




n+l n+l n+l +1 +1 )
(9) €5 (u'j-]_/g’ Uial/2r Uyi3/00 I? ? I§+1> =0

- n+l n+l 41
(10) g; (uj-l/a’ Y1/ I? ) =0

In our case we see then that the Jacobian matrix has a particulaxrly

simple form, namely that it is block tridiagonal.

/%1 c,
A, By G, <:>
Ay By G

where the submatrices are 2 x 2.

auag 5 aagj
o |3 T3-1
J 38 3z,

Sus 1/ 9T, )

«ll-




| og.
5u3+1/2
12) B. =
(12) 3,
dg.
EEJ'+J./2
og. g
Euj+3/2 EIj+l
(13) ¢, =
J
dg. dg.
. Sus43/2 T;
N where all differentiations are with respect to the variasbles u or I at
time n+l.

We use the usual scheme to invert a block tridiagonal matrix [2].

Define 2 x 2 matrices as follows:

W, = B, C,3 W, = (B, =AW, C. 2< j< Jel

1 17 J (J JJ-l) e SJsd

G =BYr.; G, = (B, =AW, .\"Nf, =AG 2< 3<7J
‘ 1= BT Gy= (By = AN (T 7 AgSe1) =Jz

If we redefine Ay and f so that
f, = g .= (L, .
3 (gj’ gO)’ V5 = (/28T

then

A S -15-




Ny = Gy

G, - W.Ay.

Ay =Gy =Wy 123201

The p+l=st iterate is obtained by setting

(p+1) _  (p)
Uyer/2 T Yiea/e Y Myaa/e

o) _ 1),
J J J




Chapter II
Derivation of Matrix Elements and Stability Analysis

We now derive the entries of the 2 x 2 submatrices of the Jacobian

matrixe. Referring to (6), (7), (11), (12), and (13) we have:

/=201t aperl - apriﬁ O
2

Byt Ep \Pyerfe Myey/

=0/t o n+l/ n+l n+l
m; Buj_l/z |:p,j (uj-l/a uj+l/2>] O

o1 n+l 1 1
roose (O %\ aen (35T G
m, +m ou m. + IJ - Ij

3 J+L J+1/2 au3+1/2 3 J+1

=ONL d [ n+l [ n+l n+l oAt 9o n+l [ n+l
T S|P u - le—=— e ,
m'j j+l/ ) J ( J'l/ 2 u;j"’l/ 2)] mj gg [pJ (uJ'l/ 2 uJ+l/ 2)]




n+l n+l n+l +1
—ont [ O%5 %Py P s aI’p;j+:n.
my o+ M1 \HMyuz/e Mgezfe) Byt By Oy L5

O O

Here again all differentiations with respect to u and I are to be taken

at time n+l.

To complete the derivation we need the various partial derivatives

of the pressure terms.

From (2) it follows that

n+l ndl  _ on n n+l n+l
(14) X541/2 = ¥5-1/2 = Xj1/2 T Xjer/2 t 9At(“,j+1/2 u,j-l/a)

+ (1-6)at (u§+1/a ey, 2)

The pressure term may then be written

41 n
n+l (7-l)mjf31 Y 7Pj un+l - un+l
Ps T mT n+l n+l n+l j=1/2 T “j+1/2
X - X X - X
J+1/2 T T-1/2 J+1/2 T X3-1/2

Y-1/2 T Yyea/2 7 O

«18=




+1.
pn+l___ (7'1)’“31?
J xn+l - xn+l
j+1/2 j=1/2
if
n+l n+1

Usa1fp = U41/2 S 0

A tabulation of the pressure derivatives follows:

3p+t -1)m 6AtT, 7.
au—pl—“ e 2" / -
R X. - X,
j+1/2 <Xj+l /o " xj-l/2> J+l/2 T Tj=1/2

-mﬁ/ 7P (%3-1/2 = %ge1/2)

*j1/2 T Xger/2 (/2 T Xse1/2)

- < 0.
where the last two terms do not appear if u jel /2 uj+l/2 <0

n+l n+l
ap,j+l - . apj+l
Susiife z/e
n+L
Bp?+l (')'-l)m‘i 6p.+l
= o ; I. = O
9Ly  (*s1/2 = ¥5-1/2) J




apn'f-l

o) n+l X el
Ea,j+l/2 [p'j (“5=1/2 7 "ge1/ 2)] = (Y3-1/2 T Vg41/2) - Py

j+1/2

n+l
d n+l/ n+l n+l _ op
3T, [Pj (u,j-l/2 - uj+l/2)] = ("5-1/2 T %341/2) 'B'%‘
n+l n+l n
apj . Bpj ; bpj+l _
amj--l/e auj+l/2 auj--l/a
3 1 apn+l
n+ _ _ :
S 170 [pj (W3-1/2 = u3+1/2)] =Pyt (Yya1/2 T Y541/2) &:‘l—j_l 72
n+l n+l n+l
op. . 31’1+1 dp 31
Sl 0 itk -
J+3/2 3+3/2 3+1/2
n+1 n+l
gﬂj— = 0; ap’j*”l = (7-l)m3+l
Ty aI.J"+l *543/2 T X51/2

Thus if we write

K = 6at
K
Al = ———
My + My
M,

5 = Yy-1/2 T Yye/2

-20-




we have:

apn-f'l
2Am Su_‘l—
J+1/2 O
A, =
J
bpm'l
K :
- 2 |-, &1—‘1— + P.
"3 ( Y Ter/e J> O
n+l n+l
[ eAm(apj , apj+l> ~2tm(y-1)n,
6u,j+l/2 au,j+3/2 X541/2 ~ *3-1/2
B, =

dJ
" ap;+ K, (7-1)
- = lm - p, 1- _
m J X341/2 ~ *ja1/2

. Bpr.l:i 2Am(7-l)mj+l
3+3/2 *543/2 © ¥ye1/2
c .=
Jd

O O

The method described in Chapter I is used to invert this matrix.

Stability Analysis

As has been pointed out [3] a rigorous stability analysis for the
hydrodynamical difference equations has not been carried out. This

analysis proceeds in the same manner as that done by Fromm (1l

- 21-




We assume that the field variables vary slightly from their true

values.
Let:
g#1/2 = Bo(t * fyay0)y ESE
p,j =po(l+ej), ek 1
Ij=Io(1+5j), 5 << 1

For simplicity assume that the cell masses are equal; mJ. =m = poéxo.

We substitute these values in the difference equations and get the
equations of first variation, dropping all higher order terms.
nm, P Ox
_$1 -—.O__O_.... = &x <1_€n>
0 J

n

X.
J+l/2 3-1/2 B <l+€:}>
i Pol™

Then (14) becomes

85tu (1-8)5tu
n+l n _ 0 /,n+l n+l 0 (/,n n
(15) €577 = €4 = 55— (gj-l/2 g3+;L/2) o, (53-1/2 - §;]+1/2>
c .5t
We define the Courant number p = = where CO is the local sound
0
speed.
Then (15) becomes
(16) €n+l - P e”uo n+l gn+l (l-G);mo §‘n - gr}
B co' 3-1/2 j+1/2) * 'c'O J=1/2 © S3+1/2




The first variation of the energy equation (7) is

n+l n 65t _n+l n+l n+l
(1) 1 (557 - o) = SF 5 w0 (5se - €3i7e)

For pg ve substitute

n n n n
(7-L)o T, (l =5+ e,j) + M5:Co (53-1/2 - 5,5+1/2)

Upon simplification (17) becomes

(7=1)pu Bt
n+l n 00 n+l n+l n n
(18) 857" - 85 = — [9 (655172 - $5aye) + (=0) (s - §J+1/2)]

Finally we get the first variation of the momentum equation by sub=

stitution into (6) and again dropping higher order terms.
n+l n 05t n+l n+l n+l n+l
(29) 8541/2 = E41/2 © m, {(7'1)"010 [(ej - €j+l> + (aj - 83+1)]
n+l n+l n+l n+l
+ Mol [(5.5-1/2 - $51/2) = (E5aye - §J+3/2)]}

B o [ 4+ (3 5]

e e ) (o~ )

=23




At this point we do the usual thing. We assume that the coeffi=
cients are constant and that the solution of these three equations of
first variation can be written in a Fourier series. If so, then each
term of the series is a solution and we look at a typical term to see
what conditions must be satisfied to make it a solution.

We assume that

n _ L, ik(3+1/2) . n
§j+l/2 = te il
e? = eeikjrg
n_ . ikjn
83 = Be r3

and consider only the special case r,=r,= r3 = To
Substitution of these values into (16), (18), and (19) yields after

simplification
(r641-6) 2i sin k/2 e
(1-r)e - g £=0
0
2iC u sin k/2 (r6+1-6)
[_ 0 € + [1 - lap sin2 k/2 (1‘9"‘1"6)"1']5
uo7

=0

2iCp sin k/2 (x6+1=0)
+ |- 7 5

21(7—-1)qu sin k/2 (x6+1-0)
- T t + (l=r)5 =0

=2l-




For this system of homogeneous linear equations to have & non-

trivial solution it is necessary that its coefficient matrix be singular.

2iuuy sin k/2 (r6+1-6)

21(7-l)uou sin k/2 (r6+1-6)

%

le-r

Expanding this determinant we get:

(1-r)[1rdh sin® x/2 (r6416)] + WP s1n® K/2 (20+1-0)2 = O

For full generality at this point we would have to study the roots
of this quadratic equation for arbitrary 6. This is somewhat difficult.
The two cases of most importance are 6 = 1/2 and 6 = 1. Let sin2 k/2 =T

For € = 1/2 the equation reduces to

rz(l + 2)4;:r2 + ;.1.21'2) + r(.?p.a'r2 - 2) + (l - 2)4;.72 + |J.21'2) =0

=l-|.12T2-2J1T 21_2
L+ 27\4172 + “21_2

T =1

l - I - O
o
2iC,u sin k/2 (x9+1-0) o 2iCOp sin k/2 (r6+1-0)
- 1 - by osin® k/2 (2041-0)=r = =0
uo‘r - uo‘y

2




Case (1): 1If 2% < 1, then r is complex

2 (1 = 1222 4 1,2%(1 - 2342)
(l + 2A.p72 + p.21'2)2

|r

l - 2)\.;11’2 + p,21'2

1+ 2%.;172 + “21_2

<1l

Case (2): 1If A2r2 > 1, then r is real.

To have r < 1 we need

2%;172 + p.2T2 > - pa’l'z + 2uT »Jxa'rg -1 or AT+ ur> 4+ hg-rz -1

But AT > A% 1, so indeed r < 1. The proof for the case 6 = 1 is
similar.
Notice here that r < 1, independent of u, the Courant number. This
shows that we have verified a necessary condition for this method to be
unconditionally stable, namely, for solutions of the equations of first

veriation having the form we have prescribed.




Chapter III

Discussion of Numerical Results

The first problem used to test the scheme is the one used in [2].
Here we have two constant states separated by a discontinuity. The con=
figuration at 40 cycles is a shock moving with speed l.24, a contact
discontinuity at the point of initial discontinuity, and a rarefaction
wave.

The initial conditions for this problem are:

y = 1k

Ot = 00337 (the Courant value)

J = 50 (25 cells to the left of the interface and 25 cells to the

right).
| Material on left Material on right

m.‘,j =1 | mj =1
Py = 0.5 Py = O. k5l
Py = 3.528 P, = 05714
uy = 0.698 ug =0
I, = 19.756 I, = 2,857

2w




Tables 1, 2, and 3 give the velocities, densities, and internal
energies for several different calculations.

The Lax=-Wendroff figures refer to the values obtained using the
scheme of Reference k.

Exact refers to the analytical values.

Explicit refers to values obtained using one of the explicit schemes
of Reference l.

:I:mp:L refers to calculations done with all 50 cells having mass one.

To test numerically the unconditional stability of the implicit dif=
ference scheme a thin cell having the same density, but only a tenth the
mass and width of the other cells, was put into cell 20. This means
that the Courant condition was violated there by a factor of approxi=
mately ten. Imp2 refers to calculations done with this thin cell.

Ing)3 is similar to Impa, the only difference being that this time
cell 20 was given mass and width one-hundredth that of the other cells.
Thus the Courant condition was violated by a factor of approximately
one hundred. As can be seen from the results for Imp2 and Imp3, no
instability appeared in the calculation. When the explicit method was
run with a thin cell, large fluctuations appeared and eventually two
cell boundaries crossed near the thin cell.

Since Newton's method involves evaluating the elements of a large
matrix and then inverting it, another method for solving the system of
simultaneous nonlinear equations wes considered, namely, the method of
nonlinear overrelaxation as described in [5]. If one has a system of

k algebraic equations

-28~-




fi(xl, Xy eesy xk) =0 1=1240e,k

each having one continuous derivative, then the generalization of ordie

nary overrelaxation suggested by Lieberstein for the nonlinear system

is
x](-n"'l) _ x(n) o fl_x{n).vxén): oo-)xl({n)]
B i n n
fll.X}:n),Xé ), ooo,x}({ )]
[ 1 n

x(n+l) _ x(n) - o f2 _xj(-n-'. ))xg )J ‘..’xl({n)]

2 -3 n+l n
tolig g e

etc., where fii = afi/axi. Here superscripts on variables denote the
nth iterate and n+l-st iterate and w is the relaxation paremeter.

It was hoped that this method would be faster than Newton's method
for solving the system of nonlinear equations. As Lieberstein points
out, the rate of convergence of this method depends rather critically on
the choice of w. For our choice of w = 1 the overrelaxation method was
actually slower than Newton's method, but a more careful study of how to
choose & in an optional manner would probably maske the overrelaxation
method faster than Newton's method.

Figure 1 gives the velocity profile for Imp:L superimposed on the

exact solution. Figure 2 gives the density profile for I.uml superin-

posed on the exact solution.




Figure 3 gives the velocity profile neax the shock front for
6 = 1/2 and three different values of Ao In general a large value of
M gives a smoother profile near the shock front but spreads the shock
over several cells. A smaller A gives a sharper shock front but has
more oscillation. Some intermediate value of A gives the best compro-
mise between these two effects. We have found that for 6 = 1/2 a smaller
A can be used than for the explicit case. This is clear from Figure 3.
To test the explicit case we needed to take M = 0.7 and even then some
oscillations appeared near the shock front, but for the implicit case
A = 0.5 gave a fairly sharp shock front with practically no oscillation.

Several trials were run with @ = 1. The most notable differences
in the results are that (1) they are somewhat less accurate than for
6= 1/2 and (2) it was found that the pseudo=-viscosity term was un-
necessary and A = O gave the sharpest shock front with little oscil=
lation.

The reduced accuracy may be understood when one considers that for
6 = 1/2 all the differences are centered and the truncation errors are
of order (At)3. For any other choice of 9 some second=order truncetion
error is present. One should then expect more accurate results for
6 = 1/2 then for eny other choice of 6.

The result that A = O is the best choice means that the implicit
scheme itself contributes an effective viscosity term when @ = 1.

Teble 4 gives the velocity profile for © = 1, A = 0 and A = 0.5,




The total number of Newton iterations required to get to t = 13.48

is approximately 120 for Impl, Impz, and Imp3 and for 0 = 0.5 and 6 = 1.
This number is thus apparently independent of the degree to which the
Courant condition is violated in zone 20.

The convergence criterion used required that the maximum percentage
change in any value of u or I be less than 1% on one Newton iteration.
This generally required three Newton iterations for each time cycle.
When this criterion was relaxed to the point of requiring the maximum
percentage change to be less than 10% the final results were changed at
most by a unit or two in the fourth significant digit. For this cri=
terion only two Newton iterations were required for each time cycle.

When the stricter convergence criterion is used timing experiments
have indicated that the explicit method is approximately five times
faster per time step than the implicit scheme. In this case use of the
implicit scheme isA indicated when the Courant condition is to be vio=
lated by a factor of 5 or more.

" With the less stringent convergence criterion the explicit method
is only about three times as fast as the implicit method. Thus if this
convergence criterion gives sufficient accuracy, and in practice it has,
use of implicit scheme is indicated when the Couré.nt condition is to be
violated by a factor of 3 or‘more.

In practice the rate of convergence has been approximately quade-

ratic, the maximum percentage change being roughly squared each time.

vAlso in practice the Jacobian matrix has proved to be diagonally dominant.

-31-




This partially accounts for the accuracy of the inversion routine and
the rapidity of convergence of Newton's method.

The second problem involves one gas, half of which is initially at
rest, the other half initially moving with constant velocity. The con=-
figuration at 40 cycles is two rarefaction waves moving in opposite
directions at a sound speed which is C = 0.316,

The gas initially at rest is divided into 90 cells of mass O.l.
The gas which is initially moving is divided into 10 cells of mass 1.0.

Other initial conditions are:

7 = lou 6 = 0.5
}J.t = 005 A=0
Finely celled ges Coaxrsely celled gas
= Y . = l-O
py = 1.0 Pj
. = 0.0 = o
uJ 0 u'j 2.0
Py = 0.0714 Py = 0,071k
Ij = 0.1786 IJ = 0.1786

Figure L gives the plot of the density at time t = 20 from the
numerical results and also the analytical values. It can be seen that
no instabilities have appeared in the finely divided material even
though the Courant condition is violated by a factor of approximately
two.




‘ B

One difficulty apparent from the graph is that the implicit scheme
seems to lag behind the true solution in the finely divided region.
Evidently the scheme does not allow signals to be propageted at sound
speed in such a finely divided material. This may be the fault of the

form of the difference equations, since they are nonconservative.
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